
Phase 1:
Create Open Source Compliance Policies

Modern technologies that form the

backbone of major technological

innovations all have roots in open

source — from microservices to agile

CI/CD, from digital transformation to

artificial intelligence (and we could

go on). Open source is now a key

part of any software strategy, with

77% of Enterprises including open

source in commercial products,* and

it’s not hard to understand why. From

lowering the total cost of ownership

(and decreasing time to market) to

improving development practices and

product quality, open source comes

with clear benefits to your business.

To ensure your company can reap

the benefits from a rapid adoption

of open source technologies, you

need to have a strategy to manage

your open source consumption

responsibility. Understanding where

to get started, however — especially

when you’re operating at scale — can

be daunting. FOSSA has partnered

with leaders in open source from

foundations like OpenChain and Open

Source Program Office experts from

companies like Uber, Verizon Media,

Ford, and TDAmeritrade to assemble

and share these best practices in

developing open source compliance

programs.

TL;DR
Creating an Open Source
Compliance Program:
Auditing your Company’s
use of Open Source

Phase 1 Checklist

Step 1: Understand Your Company’s Software Profile

• Create an inventory of company products

• Create product profiles

• Create priority/risk levels for each product

Step 2: Create License Policies

• Create a general license policy for each product type

• [Optional] Create a policy for integrated software from

external vendors

• [Optional] Create policy for contribution & publishing

• [Optional] Create Inbound Request Process

Step 3: Create Educational Materials

• Create resources to educate software teams

• Create training for relevant teams

Step 1: Understand Your Company’s
Software Profile

1. Create an Inventory of Company Products

Generate a list of all products that includes ANY

software. Ensure you consider the following:

• Free or paid products that are downloadable or

installable on a customer’s or partner’s machine

• Mobile applications

• SaaS applications

• Web-hosted properties

• SDKs, plugins, tools

• Software embedded in hardware devices

• Operating systems

2. Create Product Profiles

A product profile is a form of knowledge management

about products that act as a source of truth for those

involved in open source compliance over time. This

information gives information about the tools and

third-party license policies that should be applied to

this product. For the simplest version of your Product

Profile Inventory we recommend including at least

the following fields:

• Product/project name (linked to code repository)

• Description

• Internally vs. externally facing product (and

distribution method)

• Key contact info for software/product owner

• Priority score

• Compliance rollout phase

• Notes

1. Prioritize and Iterate your

rollout. Trying to implement an

overarching compliance program

across many teams all at once

can be overwhelming and

delivers underwhelming results.

We’ve seen that enterprises

have the most success when

first prioritizing company

products, then strategically

rolling out compliance initiatives

team by team or product by

product. This allows for iteration

and improvement to reduce

any confusion, update any tool

configurations, and share internal

case studies as your compliance

program grows.

2. Automate where possible. Many

companies do start managing

open source components

leveraging open source request

forms and spreadsheets. This

process decreases accuracy

and coverage of any risk

assessments or Bill of Materials,

and increases the overall cost

of a compliance program to

a company by inefficiently

allocating resources.

3. Process is Key. While many

parts of this process can

and should be automated,

there will always be people

involved (this may include

selecting new open source

projects to implement, refining

dependency identification,

enriching dependency metadata,

reviewing flagged components,

or generating reports). Ensure

you have a process for each of

these stages in your compliance

program and opt for tools and

workflows that enable team

members at each stage.

Open Source

Compliance Program

Recommendations

Depending on your company requirements the

following information included in the project profile

might include:

• Product Metadata

- Detail about what programming languages are

used

- Brief explanation about what the product does

- Explanation of how it’s accessible/distributed to

others

- Detail about relationships with other products

(i.e. this is an on prem component for your SaaS

product)

- How the product is distributed (i.e. container,

virtualized application, embedded in hardware,

downloaded by customer)

- If the product is OEMed or might be in the future

• Key Contact Metadata: list the main contacts for

- Engineering

- Product Management

- Release Management

- Legal disclosures

• Release Metadata:

- Release schedule

- Next release date

• Compliance Metadata:

- Priority score

- License policy

- Compliance rollout phase

- Links to key reports (BOM, attribution)

Determine Open Source Compliance

Program Owners. We recommend

assembling a team comprised of:

• Program Owner to own

compliance rollout, process, and

communication

• Legal Representation to help

create policy and interpret

licenses

• IT/Engineering to implement any

tools

• Engineering leaders

Before you Get Started

3. Create Prioritization Score

This portion is entirely dependent on your company.

A couple of example factors (ranked by importance)

to include when prioritizing your products include:

• Highest distribution (remember to include free

products)

• Distribution method (e.g downloaded by customer,

SaaS, included in hardware)

• Highest business impact (connected to multiple

other products/ systems)

• Release timing/cadence

• Highest percentage of third party code

Step 2: Create License Policies

1. Create a general license policy for each product

type

Generally speaking, different product types have

different needs. In some products you might have a

policy against including any copy-left licenses like

GPL while in others your policy might be to publish

any projects that include GPL. To create a license

policy for a given product:

• Identify “Green” licenses that are always

permitted for use in a given product (this often

includes permissive licenses like MIT and Apache

2.0)

• Identify “Red” licenses that are never permitted

for use in a given product

• Identify “Yellow” licenses with Specific Policies

(e.g. GPL is OK if used as a stand alone executable

running in a separate address space).

NOTE: Most Yellow Licenses do not need to be

identified as these are generally handled on a

case by case basis. Examples of conditional

Yellow license policies include the following

situations:

- Licenses you can use in some areas of product

development

- Licenses you can include depending on how the

open source component is linked

- Licenses that require additional obligations

• Create guiding principles for when to approve

Yellow Licences

For more information on creating an open source

license policy here is a great talk by Kate Downing, a

member of the Linux Foundation, at a FINOS working

group.

For more information on open source licenses and

their obligations a few good references are:

• TLDRLegal: open source licenses in plain English

• Open Source Initiatives: licenses approved by OSI

• The Legal Side of Open Source: GitHub curated

resource

• SPDX License List

If you choose to evaluate 3rd party tools to

help manage your open source compliance

we recommend evaluating software based on

compatibility with existing software development

practices, policy priorities, ease of integration, and

the correct balance of automation and manual review

for your organization.

Example questions you might ask include:

• Can you create a policy inside the tool?

• Can you create different policies for different

products?

• Does the platform “auto-approve” green licenses?

• Does the platform have the option to block builds

containing red licenses?

2. [Optional] Create a license policy for integrated

software from external vendors

When you OEM software from a third-party and

incorporate it into your codebase and/or products,

you become a distributor of that software and need

to ensure that it complies with your open source

licensing policies.

3.[Optional] Create Process for contribution &

publishing

• Contributions should consider the business

benefits such as building a community, code

contributions, adoption of technology important to

the business.

• Contributions should consider the supportability

and maintainability benefits of providing fixes and

enhancements to upstream projects

• Contributions should consider the licensing and

contributor agreements for existing open source

projects

• Licensing for company sponsored open source

projects should be carefully considered based on

the desire for adoption and the desire to ensure

modifications are contributed back

4. [Optional] Create Request Process

If you decide to implement an inbound request

policy collect the following information so you can

credibly determine whether or not the open source

component can be used:

• Dependency name and version

• Declared license (if any)

• Link to dependency source code

• Description of how the dependency will be used

• Application/product the dependency will be

integrated into

We recommend scanning each inbound request to

identify and deep dependencies and their licenses.

Step 3: Create Educational Materials

1. Create resources to educate software teams

We recommend creating an internal document

repository to point any questions, and to serve as

a continual resource post-training. In the wiki we

recommend including the following information:

• Overview of licenses and their categories (Green,

Yellow, Red)

• Key contacts to direct questions to:

- Legal contact

- Open source technical contact

- Open source tooling owners

• Key resources and tooling information

2. Create training for relevant teams

Establish understanding across each team. We

recommend focusing your training on understanding

why compliance is important, understanding general

policy, and understanding the resources available.

Phase 2:
Initiate Compliance Program Roll Out

Phase 2 Checklist

Step 1: Identify High Priority Product(s) & Assemble Team

• Identify highest priority products to start with

• Identify key stakeholders from relevant team(s)

• Identify correct license policy

• Complete team compliance training

Step 2: Dependency & License identification

• Identify third-party open source components for

individual products

• Identify third-party open source component metadata

Step 3: Issue Identification & Remediation

• Leveraging your policy–identify components with

flagged licenses

• Review component metadata to determine next steps

• If remediation is required, work with relevant team

to address the specific issues (e.g. replace the

component, publish proprietary code, and/or add

required notices).

Step 4: Fulfilling Open Source Obligations and Generating

Attribution Files

• Create a Bill of Materials by compiling all third party

components and their licenses (SPDX recommend

format)

• Review included licenses for obligations to determine

next steps

Step 5: Finalize Process & Product Compliance

• Ensure you have correct attribution reports, source

code is made available when required, there are no

outstanding remediation issues, and all obligations

have been fulfilled

• Ensure system is in place to continue to implement this

process for new commits to the code base with clear

owners

• Reflect on improvements for subsequent products

Step 1: Identify High Priority Product(s) &
Assemble Team

• Identify highest priority products to begin rollout

• Identify key stakeholders from relevant team(s).

This is generally the engineering or software

development leader of each team

• Identify correct license policy

• Complete team compliance training

1. Identify Third-Party Open Source Components for

Individual Products

2. Identify Third-Party Open Source Component

Metadata

We recommend automating this part of the process

as much as possible. There are both enterprise-grade

and open source tools that automate dependency

identification to a varying extent. You need to gather

the following information:

• Dependency name, version

Step 2: Dependency & License identification

• Copyright information

• Declared license

• Embedded licenses

• Deep dependencies (also referred to as transitive

dependencies)

• Copyright information

• Declared license

• Embedded licenses

• File where found

• Inclusion path (dependency tree)

When evaluating a solution to help automate the

identification of dependencies you should evaluate

the following:

• The maturity of the solution

• The support available for the solution

• The sustainability of the solution

• The ease of integration with your existing

processes

• The languages/technology supported (i.e. does

the solution support your companies build tools/

development processes)

Step 3: Issue Identification & Remediation

Depending on your process and policies this can

take quite a bit of effort. We recommend evaluating

3rd Party software to aide in the identification and

remediation of issues. Common evaluation criteria

include:

• Auto approval for all green licenses

• Issue prioritization

• Issue context including information like:

- Code that triggered the flag

- Access to the dependency code

- Information about how the component was

pulled into your codebase

- File path to the dependency

• Integrations with engineering task management

tools like JIRA

• Alerting via email, Slack, etc.

• Manual resolution

- Ignore – with reason

- Dependency enrichment

- License enrichment

1. Leveraging your policy – identify components with

flagged licenses

• Identify all components, both direct and deep

dependencies, with “Yellow” and “Red” licenses

2. Review component metadata to determine Next

Steps

This is likely to be the part in the process that

requires the most hands-on attention. When

determining whether or not an issue requires

attention consider information like:

• The source of information

• What is the linkage?

• How is the component used?

• Is it dual-licensed?

• Scanned license/copyright data from source code

3. If remediation is required, work with relevant team

to resolve the issue

Potential remediation can include:

• Publishing code based on or linked to the open

source software. This may include proprietary

code.

• Removing or replacing the flagged component

and re-architecting your software

• Fulfilling additional obligations like stating changes

or building an attribution notices

Step 4: Fulfilling Open Source Obligations
and Generating Attribution Files

1. Create a Bill of Materials (SPDX recommend

format)

Generating a bill of materials or attribution notice can

be automated by several tools or compiled by hand.

When generating a Bill of Materials you generally

include the following fields:

• Package name

• Creator

• License

• And others such as listed here: https://spdx.

org/sites/cpstandard/files/pages/files/spdx_

onepager.pdf

2. Review included licenses for obligations to

determine next steps

Depending on your obligations ensure you have:

• Published/provided any source code for copy-left

licenses

• Published your attribution notice, stating any

changes, source, etc. as deemed necessary by

the license

• Repeated the above process if any software was

modified during the process

Step 5: Finalize Process & Product
Compliance

1. Ensure you have correct attribution reports, there

are no outstanding remediation issues, and all

obligations have been fulfilled

2. Ensure there is a system in place to continue to

implement this process for new commits to the

code base with clear owners

Determine your frequency. Several tools can be

integrated into the CI/CD pipeline to run continuously

in the background with every code comment. Best

practice is to ensure you are at least compliant with

every deploy and/or product release.

2. Reflect on improvements for subsequent products

Phase 3:
Iterate & Repeat with Subsequent Products

Phase 3 Checklist

Step 1: Track Program Rollout

• We recommend monitoring coverage as a percent of

product

Step 2: [Optional] Key Actionable & Success Metrics

• Issues by team or by product: determine which teams

need more hands-on assistance and training

• Time-to-issue resolution: monitor the progress and

efficiency of your systems and processes

About FOSSA

FOSSA can help to achieve all of these best practices. By

providing automated, real-time licensing and vulnerability

management for open source code no matter where it exists

within your software stack, FOSSA helps organizations minimize

the risk and maximize the benefit of open source. Request

a demo to learn more, or import FOSSA from GitHub to start

analyzing your open source dependencies today.

fossa.com

